قانون المسافة بين نقطتين
قانون المسافة بين نقطتين, يعتبر هذا القانون موضع سؤال في العديد من المناهج العلمية, وخصوصا في المملكة العربية السعودية, وحرصا منا على تفوق الطلاب فإننا سوف نقوم بحل سؤال قانون المسافة بين نقطتين ؟
قانون المسافة بين نقطتين
يعتبر هذا السؤال من أسئلة قوانين الرياضيات لاحتساب المسافة بين أيّ نقطتين على المستوى الديكارتي، ويُمكن حساب المسافة بين النقطة (س1, ص1) والنقطة (س2, ص2) من خلال الصيغة التالية: المسافة2 = (س2 – س1)2 + (ص2 – ص1)2، وبالتالي فإنّ المسافة تُساوي الجذر التربيعي ل((س2 – س1)2 + (ص2 – ص1)2.
اشتقاق قانون البعد بين نقطتين
تستطيع اشتقاق قانون البعد بين نقطتين من خلال ما يأتي:
- تحديد إحداثيّات النقطتين على المستوى الديكارتي على فرض أن النقطة الأولى تساوي أ، والنقطة الثانية تساوي ب.
- رسم خط مُستقيم يصل بين النقطة أ والنقطة ب، وإكمال الرسم ليتشكل مثلث قائم الزاوية في النقطة ج.
- من خلال نظرية فيثاغورس يتضح أنّ: (ب ج)2 + (ج أ)2 = (أب)2 تحديد إحداثيات النقطتين أ و ب، بحيث أن النقطة أ تساوي (س1,ص1) والنقطة ب تساوي (س2,ص2)، وبالتالي فإنّ المسافة الأفقية (ب ج) = س1 – س2 ، والمسافة العمودية (ج أ) = ص1 – ص2.
- تعويض قيمة كل من (ب ج) و (ج أ) في الخطوة السابقة بقانون نظرية فيثاغورس فينتج ما يأتي: المسافة2 = (س1 – س2)2 + (ص1 – ص2)2 المسافة بين النقطتين أ و ب = الجذر التربيعي للقيمة ((س1 – س2)2 + (ص1 – ص2)2.
وبذلك نكون قد أجبنا لكم أحبائنا الطلبة والطالبات الأعزاء على سؤالكم المتعلق بـ “قانون المسافة بين نقطتين” بشكل نموذجي وصحيح. ونرجو أن تكونوا قد حققتم أقصى استفادة من المقال, وإذا لاحظتم أي غموض أو التباس في الشرح المقدم فيمكنكم التصحيح من خلال قسم التعليقات.
ملاحظة: الحلول المقدمة من قبل فريق كل شيء للمنهاج العلمي والدروس والأسئلة الواردة الينا هي حلول تمت مراجعتها من قبل فريق متخصص.
كنا وإياكم في مقال حول إجابة سؤال قانون المسافة بين نقطتين, وإذا كان لديكم أي سؤال أخر أو استفسار يتعلق بمنهاجكم أو بأي شيء؛ لأننا موقع كل شيء فيمكنكم التواصل معنا عبر قسم التعليقات، وسنكون سعداء بالرد والإجابة عليكم.